MEASURE OF INCONSISTENCY. AHP & POTENTIAL MEETHOD. A COMPARISON.

LAVOSLAV ČAKLOVIĆ

Preference graph

A preference graph is a digraph $\mathcal{G} = (V, \mathcal{A})$ where V is a set of nodes and \mathcal{A} is a set of arcs of \mathcal{G} . We say that the node a is more preferred than the node b, in notation $a \succeq b$, if there is an arc (a,b) outgoing from b and ingoing to a. A preference flow is a non-negative real function \mathcal{F} defined on the set of arcs. The value \mathcal{F}_{α} on the arc α is an intensity of the preference on some scale¹. For the arc $\alpha = (a,b)$, $\mathcal{F}_{\alpha} = 0$ means that the decision maker is indifferent for the pair $\{a,b\}$. In that case orientation of the arc is arbitrary. A preference flow is consistent if there is no component of the flow in the cycle-space of the graph. According to that definition, \mathcal{F} is consistent if the sum of algebraic components of the flow along each cycle is equal to zero. Equivalently, \mathcal{F} is consistent if there exists $X \in \mathbb{R}^n$ (called potential) such that $AX = \mathcal{F}$, where A is an incidence matrix of the graph. If \mathcal{F} is not consistent, the potential X may be calculated as a solution of the equation $AX = \mathcal{F}_0$ where \mathcal{F}_0 is the best approximation of \mathcal{F} in the column space of the matrix A. It is evident that a potential X of the consistent flow is a measurable value function on the set of nodes, i.e.

$$\mathcal{F}_{(a,b)} \ge 0 \iff X(a) \ge X(b)$$

$$\mathcal{F}_{(a,b)} \ge \mathcal{F}_{(c,d)} \iff X(a) - X(b) \ge X(c) - X(d).$$

In Saaty's Eigenvalue Method (EVM) input data are captured in a positive reciprocal matrix $A = (a_{ij})$. By definition, A is consistent if

$$a_{ij}a_{jk} = a_{ik}, i, j, k = 1, ..., n.$$

A connection between those two types of consistency is the following: If we define a flow by

$$\mathcal{F}_{(i,j)} := \log(a_{ij}).$$

then, \mathcal{F} is consistent iff A is consistent.

RANK REVERSAL AND RANDOMIZATION.

We say that a **condition of order preservation** (COP) for AHP is satisfied if

$$a_{ij} > a_{kl} \implies \frac{w_i}{w_j} > \frac{w_k}{w_l},$$

where $A = (a_{ij})$ is the reciprocal positive matrix and w its Perron eigenvector. For the preference flow \mathcal{F} , we say that COP is satisfied if:

$$\mathcal{F}_{(i,j)} > \mathcal{F}_{(k,l)} \implies X_i - X_j > X_k - X_l.$$

¹For subjective pairwise comparisons the scale is $\{0, 1, 2, 3, 4\}$.

A measure of inconsistency in EVM is given by *inconsistency index* (CI), in Potential Method (PM) inconsistency is measured by an *angle* between \mathcal{F} and \mathcal{F}_0 measured in degrees (DEG). To compare those measures we performed 10^4 simulations of positive reciprocal matrix. For each randomly generated reciprocal matrix we calculate its inconsistency index CI the inconsistency measure DEG of the corresponding flow and a number of violations of COP (NOV) for EVM and PM respectively.

CONCLUSION.

It is shown that NOV and DEG are very good correlated for PM (r=0.811) and NOV and CI are not good correlated for EVM (r=0.460) and NOV for both methods are highly correlated (r=0.951), which allows to conclude that inconsistency measure for EVM is not well designed and it should be used by caution. It is also shown that DEG is distributed as a Gumbel Distribution. For instance, if the randomization is made as a log-normal perturbation N(0,1) of the random consistent flow, the inconsistency measure DEG is distributed as the Gumbel Distribution $E(\alpha=17.61,\beta=7.03)$. This allows to define an $\it upper bound$ for admissible inconsistency of DEG as a $\it p$ -quantile $(\it p=0.05)$ of the random degree distribution as a function of the number of nodes in the graph.

Table 1. Quantiles of random degree as a function of the nodes number. 10^5 simulations.

		Gumbel Distribution $E(\alpha, \beta)$			
nodes	perturbation	0.05-quantile		(),	- /
number	$\sigma = 1$	from data	theoretical	α	β
3	normal	1	-3.1	9.43	11.41
	uniform	1	-2.8	9.81	11.48
4	normal	6	5.3	15.01	8.83
	uniform	7	5.9	15.43	8.66
5	normal	10	9.9	17.61	7.03
	uniform	11	10.6	18.09	6.81
6	normal	13	12.7	19.18	5.91
	uniform	13	13.4	19.59	5.6
7	normal	15	14.7	20.24	5.07
	uniform	15	15.3	20.59	4.80
8	normal	16	16.1	21.03	4.47
	uniform	17	16.7	21.34	4.22
9	normal	17	17.2	21.64	4.02
	uniform	18	17.7	21.88	3.79
10	normal	18	18.0	22.06	3.67
	uniform	18	18.5	22.31	3.44

In randomization procedure we used Perl and data analysis was performed by Mathematica and R.

Faculty of Natural Sciences, Department of Mathematics, University of Zagreb, Bijenička 30, $10\,000$ Zagreb, Croatia, Caklovic@math.hr